
Fast and Reliable Example-Based Mesh IK for Stylized Deformations

Kevin Wampler∗

Adobe Systems Inc.

Abstract

Example-based shape deformation allows a mesh to be easily ma-
nipulated or animated with simple inputs. As the user pulls parts of
the shape, the rest of the mesh automatically changes in an intuitive
way by drawing from a set of exemplars. This provides a way for
virtual shapes or characters to be easily authored and manipulated,
or for a set of drawings to be animated with simple inputs. We de-
scribe a new approach for example-based inverse kinematic mesh
manipulation which generates high quality deformations for a wide
range of inputs, and in particular works well even when provided
stylized or “cartoony” examples. This approach is fast enough to
run in real time, reliably uses the artist’s input shapes in an intu-
itive way even for highly nonphysical deformations, and provides
added expressiveness by allowing the input shapes to be utilized in a
way which spatially varies smoothly across the resulting deformed
mesh. This allows for rich and detailed deformations to be created
from a small set of input shapes, and gives an easy way for a set of
sketches to be brought alive with simple click-and-drag inputs.

Keywords: deformation, shape modeling, as-rigid-as-possible,
shape space

Concepts: •Computing methodologies → Animation; Mesh mod-
els;

1 Introduction

Even a relatively simple shape in computer graphics is typically
represented by a polygonal mesh which is too complex to manually
modify vertex by vertex, and certainly not in a real-time applica-
tion. Higher level tools are instead necessary to control the shape
by manipulating a small set of parameters. Shape deformation pro-
vides one convenient way of doing this. The user controls the posi-
tion of a few vertices or localized areas of the mesh, and the proper
distortion for rest of the shape is automatically inferred.

The user’s input while interacting with a deformable mesh can be
modeled as constraints which must be satisfied by the resulting
shape – for instance specifying the position to which a particu-
lar vertex must be moved. Traditionally, the deformed shape is

∗e-mail:kwampler@adobe.com
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c⃝ 2016 ACM.
SA ’16 Technical Papers,, December 05-08, 2016, , Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2982433

then computed as one which bends or stretches the input shape as
smoothly as possible while still satisfying the specified constraints.
Unfortunately both real-world and artist-designed shapes often do
not deform in this manner, instead deforming in a way which is
more complex: sections will twist, thin, or balloon, muscles will
bulge, specific parts will curve or bend, etc.

We consider the creation and manipulation of models capturing
these sorts of complex deformations. We focus in particular on
the interactive manipulation or animation of virtual shapes or char-
acters, including highly stylized artist-created examples. To en-
sure that our deformable models are easy to create, even for non-
technical users, we base our approach within the paradigm of
example-based deformations where multiple shapes are provided
as input and the range of features observed in these shapes is used
to inform the resulting deformation. This has the advantage that it
can be applied directly to free form meshes without any need for
complicated character rigs or manually crafted parameterizations.

After a set of input shapes is provided, the natural question that
arises is precisely how they should be combined to create a de-
formed shape based on a user’s inputs. In the context of interactive
shape manipulation or animation, this technique should be both fast
enough to run in real time, and reliable in that the result reflects the
design of the inputs shapes in an intuitive and easily predictable
manner, even for highly stylized inputs. Finally, because of the ef-
fort required in an artist creating a large number of input shapes, the
approach should also be expressive in that a wide range of visually
plausible deformations can be created from a relatively small set of
inputs.

With this in mind, we propose a novel approach to example-based
shape deformation. This approach generalizes the traditional as-
rigid-as-possible deformation energy to allow for example-based
deformations, and is fast enough to run in real time. We achieve
reliable deformations by viewing the issue of reliability as a combi-
nation of a scattered data interpolation and an elastic deformation,
and deriving a new form of an example-based elastic energy com-
bining properties of both. We also support the easy authoring of
expressive models by supporting deformations that employ the pro-
vided input shapes in a manner which is spatially localized and can
smoothly vary over the mesh.

Our primary contribution is the development of a technique for real-
time kinematic example-based mesh deformation which achieves
high-quality and intuitive results across a wide range of cases with
no parameter tuning, including highly non-physical stylized inputs.
This involves three sub-contributions working in concert:

1. We develop a new approach for generalizing a non-example-
based elastic energy into an example-based elastic energy
which improves how reliably the inputs shapes are used, by
considering not only the space spanned by the input shapes,
but also the desirability of different shapes within this space.
This combines the strengths of existing shape space ap-

http://dx.doi.org/10.1145/2980179.2982433

proaches with some beneficial properties typical of scattered
data interpolation.

2. We give an example-based generalization of an as-rigid-as-
possible energy as applied to a mesh parameterized with lin-
ear blend skinning, as well as an associated optimization algo-
rithm. This allows high-quality deformations to be calculated
in real time even for high-resolution meshes.

3. We describe an example-based elastic energy which allows
the degree to which each input shape is used to smoothly
vary over the resulting mesh while retaining real-time perfor-
mance, building upon previous approaches for plastic defor-
mations [Jones et al. 2016].

2 Related Work

The ability to deform a potentially complex input shape by pro-
viding a small set of user-specified constraints is an important and
well-studied problem in computer graphics, a survey of which is
provided by Botsch and Sorkine [2008]. Typically the input shape is
represented as a triangulated mesh or tetrahedralized volume so that
calculating the deformation amounts to computing new positions
for the vertices in the shape. The most popular way of approaching
this problem for free form meshes is to minimize an elastic en-
ergy on the shape subject to some set of user-specified constraints.
This energy measures the accumulation of local distortions of the
deformed shape with respect to the input shape. Of particular rel-
evance to our work is as-rigid-as-possible (ARAP) shape deforma-
tion [Igarashi et al. 2005; Sorkine and Alexa 2007; Liu et al. 2008;
Chao et al. 2010; Jacobson et al. 2012a; Levi and Gotsman 2015]
which measures local distortions by the degree of non-rigidity they
induce. ARAP deformations are relatively simple to formulate, effi-
cient to compute, and normally give rise to visually pleasing results.

Most shape deformation approaches are formulated with respect to
a single input shape, which does not allow detailed control over
how the deformation should deviate from this base shape. To rem-
edy this, our method draws inspiration from an existing class of
techniques which rely on multiple input shapes. One facet of this
is the problem of shape interpolation, in which a deformed shape is
generated by blending the input shapes with different pre-specified
weights. In some contexts such as the use of blendshapes in face
animation [Bergeron and Lachapelle 1985] this interpolation can
be performed directly in the space of vertex positions, but in most
cases this leads to obvious artifacts, and variety of alternatives have
been proposed. These include using alternative parameterizations
such as pyramid coordinates [Sheffer and Kraevoy 2004], interpo-
lating along geodesics in a Riemannian space [Kilian et al. 2007],
guiding the interpolation by clustering poses in a database [Gao
et al. 2013], or by explicitly considering the rigid and non-rigid
components of the interpolation in an as-rigid-as-possible approach
[Alexa et al. 2000; Chao et al. 2010; Levi and Gotsman 2015].

Shape interpolation is sufficient if it is reasonable to explicitly spec-
ify the interpolation weights, but in many situations it is desirable
to infer these weights automatically. Depending on the context, this
can be done either with a kinematic technique such as ours, or with
a dynamic technique when one wishes to calculate the deformations
in the context of a physical simulation. The most common formu-
lation within this latter category augments the physical dynamical
equations with a constraint that the simulated shape lie near the
subspace spanned by the input shapes [Martin et al. 2011; Koyama
et al. 2012; Schumacher et al. 2012; Song et al. 2014; Zhang et al.
2015]. Jones et al. [2013] take a similar approach and constrain the
simulation to lie within a user-specified simplicial complex on the
input shapes. A related method is described by Jones et al. [2016]
in the context of plastic, rather than elastic deformations.

Our approach is kinematic rather than dynamic in that it does not
rely on any physical simulation and instead calculates the deformed
shape purely from the input shapes and user-specified constraints.
This is done in the spirit of inverse kinematics where the user pro-
vides positional constraints on localized portions of the mesh. In-
verse kinematic approaches are popular with kinematic skeletons,
a context in which Grochow et al. [2004] use a set of example
skeletal poses to guide the result. An analogous operation in the
context of free form mesh deformation was introduced by Sumner
et al. [2005] and later improved by Der et al. [2006] and Fröhlich
and Botsch [2011]. Alternatively, Lewis and Anjyo [2010] and Seo
et al. [2011] perform a similar operation in the specific context of
face deformation. The basic technique used by these approaches is
similar to that of example-based dynamics in that the deformation
is chosen to lie as close as possible to a linear or convex subspace
spanned by the example shapes.

As an alternative to choosing the deformed shape as one nearest to a
subspace spanned by the input shapes, it is natural to view calculat-
ing the deformation as a scattered data interpolation problem. That
is, choose the deformed shape not based on an energy measuring
the distance from a subspace, but instead as one which blends be-
tween nearby input shapes. Often this is done by parameterizing the
deformation within an abstract pose space [Lewis et al. 2000] and
using traditional scattered data interpolation techniques such as ra-
dial basis functions [Sloan et al. 2001; Zhang et al. 2004] or kernel
CCA [Feng et al. 2008] within this space, after which the interpo-
lated shape is calculated, sometimes with explicit detail preserva-
tion [Weber et al. 2007; Huang et al. 2011; Hahn et al. 2014]. In
many cases, particularly in restricted contexts such as skeletal rigs
or face deformation, these methods perform well. With respect to
elastic energy-based approaches, however, they have the disadvan-
tage that they require a (sometimes large) set of input shapes and are
not designed to calculate deformations when given only one or very
few input meshes. One notable approach which combines some as-
pects of elastic energy with scattered data interpolation is given by
Milliez et al. [2013], who discretely choose pieces of a larger model
from a set of example shapes by projecting to the nearest neighbor
as measured by an ARAP-based distance metric.

Also related to our approach is the topic of mesh skinning [Seder-
berg and Parry 1986], whereby the deformation of a shape is di-
rectly parameterized by a small set of controls, with the influence
of these controls propagated to the entire mesh. Using a cage for
this parameterization is a popular approach, and a survey is given
by Nieto and Susn [2013]. In the case of character animation it may
make more sense to bind the mesh to the pose of an underlying kine-
matic skeleton [Baran and Popović 2007; Wareham and Lasenby
2008]. In our implementation, the user places a set of handles at
localized positions on the mesh, and the influence of these handles
over the mesh is computed with bounded biharmonic weights [Ja-
cobson et al. 2011]. Jacobson et al. [2012b] and Wang et al. [2015]
provide alternative methods for handle-based skinning.

3 Overview

The input to our mesh deformation method is a set S of example
shapes. Each of these shapes is represented by a triangular mesh
and describes an example rest shape for some object. These meshes
must have the same vertex set P and the same triangle set, so they
only differ in the positions of their vertices. The shape of the sth ex-
ample mesh, denoted by ps, is represented with a one-dimensional
array of length |P|, each element of which is a k-dimensional vec-
tor describing the position of a single vertex, where k is either two
or three depending on the dimension of the space the mesh is em-
bedded in. All of the ps example meshes are collected together into
a single |S| × |P| array denoted P . Recall that each element of P

is a k-dimensional vector, rather than a single scalar.

We allow a user to manipulate a mesh by controlling a set H of
handles. Each handle is associated with a subset of the vertices of
the mesh. A deformed mesh q is computed by the user specifying
the position of each handle, from which the positions of the remain-
ing vertices are computed automatically. For any particular setting
of the desired positions of each handle in H, there is an associated
constraint set C such that q ∈ C if and only if each handle in q is
located at its desired position.

As is standard with existing example-based mesh deformation ap-
proaches, we compute a deformed mesh q by minimizing an elastic
energy E(q,P , b). Here q is an array of length |P|, each element
of which is a k-dimensional vector describing the position of a sin-
gle vertex in the deformed mesh. P is an array combining the ver-
tex positions of all of the ps input meshes as previously described,
and b is a length-|S| array of scalars such that bs gives the degree of
contribution for the input mesh ps to q. We will further enforce that
b is nonnegative and sums to one. In section 5 we will show how b
can be extended to allow spatially localized interpolations, but for
now will use this simplified form to make it easier to compare to
previous work.

The general form of the optimization used to solve for an example-
based mesh deformation as applied to the context of mesh-based
inverse kinematics can then be written:

qopt, bopt =argmin
q∈C,b

E(q,P , b) (1)

The primary concern of this paper is to derive a definition for E
appropriate for fast and reliable mesh-based inverse kinematics. It
is tempting to view this problem as either a trivial generalization
of mesh interpolation, or as a trivial restriction of example-based
elastic material simulation. It is perhaps surprising then that there
are difficulties specific to mesh IK that do not appear in either of
these two contexts. To better motivate our approach we will begin
by examining these alternatives.

To provide a pedagogical example to compare the different ap-
proaches, consider a simple square-shaped mesh. As the square
is stretched it should first puff outward, and then thin inward as it is
stretched yet further. This behavior is specified with the three input
meshes shown in figure 1. Each of three input shapes is shown in
a different color. The deformation is controlled by specifying the
position of three handles, each of which is shown as a black dot.
We will consider in particular what happens as the user drags the
rightmost handle.

Figure 1

Although this would intuitively appear to be a very simple exam-
ple, it poses surprising difficulties for existing approaches. Broadly
speaking these existing approaches can be divided into two cate-
gories depending on how E is specified.

3.1 Motivation: Energy Interpolation

One class of existing technique defines E by interpolating between
the values of a non-example-based elastic energy Ed as applied to

each ps shape independently:

E(q,P , b) =

|S|∑
s

bs Ed(q,ps) (2)

An energy of this form is typically applied in the context of shape
interpolation, where b is assumed to be fixed in advance and only
q is optimized over [Alexa et al. 2000; Chao et al. 2010; Levi and
Gotsman 2015]. If we instead apply an energy of this form to the
problem of mesh IK by optimizing over both q and b as prescribed
by equation 1, the results exhibit a rather serious artifact, as shown
in figure 2 row c. The form of equation 2 guarantees that E is al-
ways minimized when b is zero except for a one at the entry of the
input shape corresponding to the minimal value of Ed(q,ps). The
resulting deformation thus discretely jumps from one shape to an-
other as the user drags the handles, rather than smoothly deforming
as the artist likely intended.

Energies of this sort have a natural interpretation as a scattered data
interpolant. Since the optimal value of b is always zero except for
the input shape for which Ed is minimized, it corresponds to near-
est neighbor interpolation by projection to the nearest Voronoi cell
using a measure of distance as defined by Ed(q,ps). Because of
this, despite the defect of discontinuous transitions, all of the input
shapes are reliably used.

3.2 Motivation: Shape Spaces

The second class of elastic energies used for example-based mesh
deformation rely on the concept of a shape space, also sometimes
called an example manifold. As with energy interpolation this also
relies on a non-example-based elastic energy Ed, but applies it to
an interpolation of the input shapes, or of features computed from
the input shapes. Using blend(P, b) to denote a function which
interpolates the p1, . . . ,p|S| input meshes using b as a vector of
interpolation weights, these energies can be expressed as:

E(q,P , b) = Ed (q, blend(P, b)) (3)

This class of approaches is sometimes used for mesh IK [Sum-
ner et al. 2005; Der et al. 2006; Fröhlich and Botsch 2011], but
has seen particular success when applied to example-based elastic
material simulation [Martin et al. 2011; Koyama et al. 2012; Schu-
macher et al. 2012; Song et al. 2014; Zhang et al. 2015], where it
performs quite admirably. Since the goal for simulation is to have
the mesh deform in a physically plausible manner guided by the ex-
ample shapes, the passive dynamics of the mesh act as a powerful
regularizer for the deformation. Shape spaces are a natural fit here,
since within the shape space, the passive dynamics dominate. For
inverse kinematics, however, this approach also has artifacts. The
nature of the artifacts depends on whether blend(P, b) is a linear or
nonlinear function.

If blend(P, b) is linear, as in the linear deformation gradients of
Sumner et al. [2005], then deformation of the example in figure
1 is often ambiguous, since many linear combinations of the input
shapes may all satisfy the user’s IK constraints. This is shown in
figure 2 row d, where the green shape is essentially ignored and a
50/50 blend of the red and blue shapes is used instead.

It is more common that blend(P, b) is nonlinear and that it com-
putes a feature vector larger than the number of degrees of freedom
in q. As described by Schumacher et al. [2012], this means that
E will typically be zero only when q is exactly equal to some ps.
This avoids the ambiguity inherent in linear shape spaces, but adds
the complication that a nonlinear shape space may give rise to op-
timization difficulties such as local minima. Examples of artifacts

Figure 2: Each row shows a different deformation method applied to the inputs in figure 1 as the rightmost handle is dragged to stretch and
then un-stretch the shape. The graphs on the left show the blending weights over time. From top to bottom: a) Our method without rotations,
b) Our method with rotations, c) energy interpolation [Chao et al. 2010], d) linear shape space (our method with λ = 0), e) nonlinear shape
space [Schumacher et al. 2012].

resulting from this are shown in figure 2 row e, which exhibits both
discontinuous jumps as a new local minimum arises or disappears
and the optimization converging to a suboptimal local minimum
when the box is contracted, using a blend of the red and blue shapes
when the green shape would lead to a lower error.

4 Interpolation Energy

At the core of our method is an elastic energy which, when min-
imized subject to some inverse kinematic constraints, interpolates
efficiently and reliably between a set of example meshes, even for
highly stylized and exaggerated deformations. Although our elas-
tic energy is based on an as-rigid-as-possible (ARAP) energy, we
will consider it first in a simplified form. This will make it easier
to compare against the alternative energies described in section 3
without the additional complications introduced by the full ARAP-
based formulation.

As with previous approaches such as energy interpolation (sec-
tion 3.1) and shape space energies (section 3.2), we construct
an example-based elastic energy E(q,P, b) by modifying a non-
example-based energy Ed(q,p). Here, q, P, p, and b take the
same meanings as previously introduced in section 3. At runtime,
the vertex positions in the deformed mesh q are generated by min-
imizing E subject to some user-specified constraints enforcing that
q ∈ C where C represents the subset of deformations in which the
handles are correctly located at their user-specified positions.

A primary function of the elastic energy E is used to interpolate
between the artist-provided input shapes as the user-specified con-
straint set C changes (i.e. as the user clicks and drags the handles).
Given this, it is useful to consider what properties E should satisfy
not only as an elastic energy, but also what properties its minimiza-
tion has as a method for scattered data interpolation.

Firstly, E should satisfy some basic properties which define it as an
example-based energy. Both energy interpolation and shape space
energies already satisfy these:

1. If bs = 0, then E(q,P, b) is independent of ps.

2. When b is entirely zero except for bs = 1, then E(q,P, b) =
Ed(q,ps). As a consequence, E reduces to Ed when there is
only one example mesh.

3. E should inherit any symmetries of Ed. For example, if Ed is
invariant to rigid transformations, then E should be too.

Next, from the perspective of scattered data interpolation there are
some properties that E should satisfy in how the contribution of
each of the input shapes relates to the constraint set C. There are two
classes of artifacts that need to be avoided. Firstly small changes in
the handle positions should not lead to discontinuous changes in
the result, as in figure 2 row c. Secondly, we want to ensure that
interpolations of similar shapes are preferred over interpolations of
disparate shapes, avoiding the artifact in figure 2 row d where the
green shape is ignored in favor of a blend of the red and blue shapes.

4. In practice, the vector qopt = argminq∈C,b E(q,P, b)

should vary C0 continuously with respect to C.

5. Given some deformed mesh q and defining bopt =
argminb E(q,P, b), then bopt should typically be zero at en-
tries corresponding to input shapes which are dissimilar from
q. Relatedly, minb E(q,P, b) should be zero if and only if
q = ps for some s (up to the symmetries of E).

Finally, although it is not possible to entirely eliminate local min-
ima since they are present even in a standard non-example-based
ARAP energy, we wish to mitigate their effects. We formulate this
by ensuring that:

6. If Ed is convex, then so is E.

This last point has a small subtlety which is worth noting. We re-
quire not only that a convex Ed leads to a convex E, but also that E
does not depend on the nonconvexity or nonlinearity of Ed in order
to satisfy properties 1-5. This is in contrast to shape space energies
which, as illustrated in figure 2 rows d and e, give either a convex
optimization (row d) or prefer interpolating between similar input
shapes (row e), but not both.

To our knowledge no existing elastic energy satisfies all of these
properties. For example although most techniques for example-
based mesh deformation satisfy properties 1-3, energy interpolation
fails to satisfy property 4, shape space energies with a linear blend
function fail to satisfy property 5, and shape space energies with a
nonlinear blend function fail to satisfy property 6. Each of these
leads to noticeable artifacts when applied to stylized mesh-based
inverse kinematics, as shown in figure 2 rows c-e.

Our technique provides example-based deformations satisfying the
above six properties by employing a novel method for generalizing
a non-example-based energy Ed(q,p) to an example-based energy
E(q,P, b). At its core, this approach is quite simple, and begins

by calculating a set of |S| scalar constants d1, . . . , d|S| as:

ds = min
qs∈C

Ed(qs,ps) (4)

Here qs is used instead of q to indicate that a deformed mesh is
computed independently for each ds. The different ds values are
collected together into a single length-|S| vector d. Our example-
based elastic energy E is then defined as.

E(q,P, b) = Ed(q, blend(P, b)) + λdT b

The optimization to solve for q can then be simply defined as:

argmin
q∈C,b

Ed(q, blend(P, b)) + λdT b (5)

s.t.
|S|∑
s

bs = 1

0 ≤ bs 1 ≤ s ≤ |S|

where λ is a pre-specified scalar (set to 0.5 unless otherwise noted).
Note that the value of each ds only depends on ps and C so in prac-
tice they need only be recomputed once each time the user moves
a handle. We also note that the simple formulation shown here
will be complicated somewhat later on when we integrate it with an
ARAP energy, particularly by the allowance that the bs values may
spatially very over the mesh, but the core intuition behind it will
remain the same.

This optimization can be interpreted in several different ways.
Firstly it can be viewed as a weighted-L1 regularization applied to
the shape space distance Ed(q, blend(P, b)), where the weights in
the regularization are themselves defined by minimizing Ed. This
has the effect of penalizing the example meshes for which ps is far
from C, as defined by Ed. The particular weights in d are impor-
tant to the correct functioning of our energy. For example, using
an unweighted L1 regularizer on b has no effect, since the con-
straint that b be nonnegative and sum to one already enforces that
∥b∥1 = 1, so the regularizer only adds a constant term and does
not alter the location of the optimum. Alternatively equation 5 can
be viewed as taking an energy interpolation formulation and using
a distance-from-subspace term Ed(q, blend(P, b)) to smooth out
the discontinuous transitions. We prefer to interpret it as a kind of
hybrid between energy interpolation and shape spaces, and indeed
it is equivalent to a shape-space energy when λ = 0 and approaches
energy interpolation as λ → ∞.

When applied to example-based mesh deformation, we find that
the value of λ = 0.5 works well. Larger values of λ increasingly
tend toward abrupt transitions between the input shapes. Smaller
(but non-zero) values instead tend toward a generalized version of
piecewise linear interpolation, with the drawback that the influence
of an input shape can fall off increasingly abruptly when the de-
formation moves outside the convex span of the input shapes. See
figure 8 for examples of these behaviors. We prefer defining Ed us-
ing the distance ∥q−p∥2 instead of the squared distance ∥q−p∥22
since within span of the input shapes the non-squared version better
approximates a piecewise linear interpolation for non-infinitesimal
values of λ. We should also note that this method only satisfies the
continuity property (number 4 in the list at the beginning of this sec-
tion) when Ed is strictly convex, so using a non-squared distance
for Ed does not necessarily reconstruct f as an everywhere contin-
uous function. Although this is possible to fix by redefining Ed to
be strictly convex (or, in our case, strictly convex when holding a
set of local rotations fixed), we have observed that the discontinu-
ities are rare enough that they do not visually impact the quality of
the results.

5 As Multi-Rigid as Possible Deformations

We use the approach described in section 4 to derive a new tech-
nique for example based mesh manipulation based on an as-rigid-
as-possible elastic energy. We call this technique as-multi-rigid-as-
possible (AMRAP) mesh deformation. Since this approach is based
on the optimization in equation 5, it inherits many of the desirable
properties of as-rigid-as-possible deformations, such as invariance
to rigid transformations and minimization of scale and shear dis-
tortions as well as the ability to robustly and smoothly interpolate
between the input shapes. In addition, this approach also supports
spatially localized changes in how the different example shapes are
combined. To allow real-time interaction even with high-resolution
meshes, we employ a reduced coordinate model based on linear
blend skinning, described next.

5.1 Deformation Model

As noted in section 3, we allow a user to manipulate a mesh by
controlling a set H of handles. We employ a linear blend skinning
model where each handle is associated with a per-shape k×(k+1)-
dimensional matrix representing an affine transform for the handle.
These transforms are packed into a |H| × |S| array T so that the
affine transform for the hth handle and sth shape is Ths. The position
of the complete set of vertices in P describing a deformed mesh is
computed from T by linear blend skinning. This uses a |H| ×
|P| matrix of skinning weights W where Whp gives the amount of
influence that the hth handle has on the position of the pth point.
These skinning weights can be defined in many ways, including
painting by an artist, but in our implementation we select a subset of
the vertices in the mesh for each handle, fix their skinning weights
to 1, and extend the weights to the rest of the mesh using bounded
biharmonic weights [Jacobson et al. 2011]. The length-|P| array of
k-dimensional points q giving the shape of the deformed mesh is
then computed as:

qp =
∑
hs

WhpThs

[
P sp

1

]
=
∑
hs

MhspT
T
hs (6)

where to reduce notational clutter the bounds of the sum (i.e. h =
1 . . . |H|, s = 1 . . . |S|) are taken to be implicit from the names of
the indices it is summing over. M is a |H| × |S| × |P| array of
length-k+1 row vectors combining the effect of W and P on q in
terms of T.

Although this deformation model is mathematically equivalent to
standard linear blend skinning, its interpretation is slightly differ-
ent since it combines both different handles and different shapes.
For instance, scaling a particular Ths by a constant factor increases
or decreases the contribution of the sth shape to q in the vicinity
of the hth handle. On the other hand, multiplying each Ths by the
same rigid transformation for 1 ≤ s ≤ |S| has the effect of rigidly
transforming the portion of q near the hth handle. Equation 6 thus
describes q as a combination of spatially localized geometric trans-
formations and interpolations of the input meshes.

This deformation differs from that described by Jones et al. [2016]
in that it is entirely linear. This simplifies its use in the AMRAP
optimization and is helpful in allowing our method to run in real
time. Although this linear nature means that it is capable of rep-
resenting highly distorted deformations, the fact that the AMRAP
energy attempts to preserve local rigidity naturally avoids these sit-

uations and we have not observed any artifacts resulting from this
linearity in practice.

5.2 Deformation Energy

Describing the shape of a deformed mesh by manually specifying
T is tedious, particularly so when there is more than one shape. We
instead allow a user to directly manipulate the shape with a simple
click-and-drag interface and automatically infer T via an energy
minimizing optimization. This leads to both automatic geometric
distortions and automatic determination of how much each of the
input shapes contributes to different regions of the final mesh.

Our deformation energy is based on generalizing an as-rigid-as-
possible (ARAP) energy [Igarashi et al. 2005] with equation 5 to
allow interpolation between a set of shapes. This leads to an as-
multi-rigid-as-possible energy where the rigidity is measured with
respect to the set of input shapes described by p1, . . . ,p|S| rather
than with respect to a single mesh.

A standard ARAP energy, denoted Earap, measures the distortion
of a shape q with respect to a reference shape p by a sum of local
deviations from perfect rigidity. We represent both q and p as an
array of size |P|, each element of which is a k-dimensional vector
representing the position of a single vertex. Restated here for refer-
ence in the form given by [Jacobson et al. 2012a], this energy can
be written:

Earap=
1

2

∑
g

∑
(p1,p2)∈Gg

cgp1p2

∥∥(qp2
−qp1

)
−Rg

(
pp2

−pp1

)∥∥2

=
1

2

∑
g

∑
e∈Gg

cge

∥∥∥∥∥∑
p

Aepqp−Rg

∑
p

Aeppp

∥∥∥∥∥
2

=
1

2

∑
g

Eg(q,Rg,p) (7)

Where G is a set of edge groups and g indexes over 1, . . . , |G|.
As in equation 6, the bounds of the summation are taken to be im-
plicit from the names of the indices being summed over. Further,
Rg ∈ SO(k) is a local rotation matrix associated with the gth edge
group, cge is a weighting term typically calculated with the cotan-
gent Laplacian [Chao et al. 2010], and A is the |E| × |P| (sparse)
directed adjacency matrix corresponding to the set E of edges of
the triangular mesh on q. As suggested by [Jacobson et al. 2012a]
we compute G by performing k-means clustering on W with the
number of clusters set to 2|H|. This allows us to use a relatively
small number of edge groups and is important for real-time perfor-
mance since the support for spatially localized blending includes
additional variables and constraints for each edge group (equation
20).

Our AMRAP energy is based on generalizing equation 7 to interpo-
late between multiple shapes using the format outlined previously
in section 4. Doing so is slightly more involved than equation 5
would make it appear for two reasons. Firstly we must modify the
blend function to account for the fact that an ARAP energy explic-
itly optimizes over a local rotation matrix for each edge group in
G. Secondly, the blend function will need to be further modified in
order to support interpolations which spatially vary over the mesh.

Both these modifications are achieved by defining the local rotation
matrices and the blend weights both per shape and per edge group.
Accordingly, we represent the collection R of all the local rotations
with a |G| × |S| array of k × k rotation matrices. Similarly, the
per-edge-group blend weights for the different p1, . . . ,p|S| shapes
in P are collected into a |G| × |S| matrix denoted B. The interpo-
lation function used to define the analogue of a shape space for an

AMRAP energy is then defined as:

[blendg(P , B)]e =
∑
sp

BgsRgsAepP sp (8)

To avoid scaling artifacts or negative shape contributions we also
constrain ∀g, s : Bgs ≥ 0 and ∀g :

∑
s Bgs = 1. Since

blendg(P , B) computes a vector of interpolated edge lengths, we
use the notation [blendg(P , B)]e to refer a single element corre-
sponding to the eth edge.

This function can be interpreted as, for the gth edge group and each
edge e ∈ Gg first rotating the corresponding edge for each shape in
S by Rgs, then linearly blending the edges for the different shapes
together according to the weights given by Bgs. Because the in-
stances of an edge group within each shape are rotationally aligned,
and because each edge group relates only to a small localized por-
tion of the complete mesh we avoid the normal artifacts associated
with linearly interpolating directly between vertex positions.

Given the definition of the blend function in equation 8, the elastic
energy Ed on which the AMRAP energy is based is analogous to a
standard ARAP energy, but employing the blend function to locally
interpolate and rotate the different input shapes:

Ed(q,B,R,P)=
1

2

∑
g

∑
e∈Gg

cge

∥∥∥∥∥∑
p

Aepqp−blendg(P ,B)e

∥∥∥∥∥
2

(9)

We also require a definition for d in equation 5. To support spa-
tially varying geometric deformations within an ARAP-style for-
mulation, we extend this somewhat by instead computing a |G|×|S|
matrix D. Each column of this matrix is defined by first solv-
ing qs = argminq∈C,R Earap(q,R,ps) then extracting the per-
edge-group costs by setting Dgs = Eg(qs,R,ps). The function
Earap (from equation 7) appears instead of Ed since when ap-
plied to just a single shape ps, Ed(q, B,R,ps) reduces exactly
to Earap(q,R,ps).

Finally, the full AMRAP elastic energy is written in a form analo-
gous to that prescribed by equation 5.:

E(q, B,R,P) =
√

Ed(q, B,R,P) + λ
∑
gs

Bgs

√
Dgs (10)

The use of the square root in the definition allows for the results to
better approximate piecewise linear interpolations as C is changed.
The version without the square roots also works relatively well, and
may be a suitable alternative in situations where a low computa-
tional cost is paramount. Nevertheless, since we have found that
version in equation 10 can be computed quickly enough in our test
cases, we use it for all of the examples in this paper.

5.3 Solving with Rotations Held Fixed

We solve for a deformed mesh by minimizing equation 10 with
an alternating algorithm similar to that used for a standard ARAP
energy. This algorithm alternates between two steps. First R is held
fixed and T and B are solved for. Then in the second step T and
B are held fixed and R is solved for. This process is repeated until
convergence, or until a new frame needs to be displayed in which
case it is terminated early. We begin by discussing how to solve for
T and B under the assumption that R is held constant.

Since we use the linear blend skinning deformation model given
in section 5.1, solving for T is equivalent to solving for the vector
of vertex positions q representing the deformed mesh. Plugging

equation 6 into equation 9 to express Ed(q, B,R,P) in terms of
T as Ed(T, B,R,P) and expanding yields Ed as the sum of three
terms:

Ed(T, B,R,P) (11)

=
1

2
Ed1(T,P)− Ed2(T, B,R,P) +

1

2
Ed3(B,R,P)

The terms in this equation are straightforward to calculate and to
implement in code, if somewhat notationally awkward to express:

Ed1(T,P) =
∑

h1h2s1s2

tr
(
Th1s1 L̃h1h2s1s2T

T
h2s2

)
(12)

with

L̃h1h2s1s2 =
∑
p1p2

Lp1p2Mh1s1p1M
T
h2s2p2

(13)

Lp1p2 =
∑
g

∑
e∈Gg

cgeAep1Aep2 (14)

Where L is a |P| × |P| matrix and L̃ is a |H| × |H| × |S| × |S|
array of (k + 1)× (k + 1) matrices.

Similarly, Ed2 is expressed as:

Ed2(T, B,R,P) =
∑

ghs1s2

Bgs1 tr
(
Rgs1K̃ghs1s2T

T
hs2

)
(15)

with

K̃ghs1s2 =
∑
p

Kgs1pM
T
hs2p (16)

Kgsp1 =
∑
p2

∑
e∈Gg

cgeAep1Aep2P sp2 (17)

Where K is a |G| × |S| × |P| array of length-k vectors and K̃ is
a |G| × |H| × |S| × |S| array of k × (k + 1) matrices. Finally:

Ed3(B,R,P) =
∑
gs1s2

Bgs1Bgs2 tr
(
Rgs1Hgs1s2R

T
gs2

)
(18)

with

Hgs1s2 =
∑
p1p2

∑
e∈Gg

cgeAep1Aep2P s1p1P
T
s1p2

(19)

Where H is a |G| × |S| × |S| array of k × k matrices.

Assuming the P is fixed in advance, these formulas for Ed1, Ed2

and Ed3 allow Ed to be calculated with a cost independent of |P|
by precomputing L̃, K̃ and H. A similar substitution of q in terms
of T can be made to solve for D, in which case the result is given
in previous work by [Jacobson et al. 2012a]. This allows equation
10 to be minimized with a cost independent of the resolution of the
input meshes.

The final optimization for the deformed mesh involves minimizing
equation 10 subject to user-specified constraints on the position of
select vertices in q. For each handle h this constraint is modeled
by associating a single vertex ph with the handle and enforcing∑

s MhsphT
T
hs = Peqh where Peqh is the desired position of the

vertex in the deformed mesh.

To summarize, the complete optimization for T and B with R held
fixed is given by:

argmin
T,B

√
Ed(T,B,R,P)+λ

∑
gs

Bgs

√
Dgs (20)

s.t.
∑
s

MhsphT
T
hs=Peqh 1≤h≤|H|

Bgs≥0 1≤g≤|G|, 1≤s≤|S|∑
s

Bgs=1 1≤g≤|G|

To minimize equation 20, observe that Ed(T, B,R,P) is
quadratic in vec(T, B) where vec is the vectorization operator
stacking the scalar components of T and B into a single vector
of length |H||S|k(k+1)+ |G||S|. This implies that solving equa-
tion 20 for T and B reduces to minimizing the sum of the square
root of a quadratic form and a linear function subject to a set of
linear constraints. It is here that we see the benefits of the fact that
equation 5 preserves convexity, as this problem is an instance of a
well-studied form of convex optimization known as a second-order
cone program (SOCP) [Boyd and Vandenberghe 2004] which can
quickly be globally minimized. Although problems of this form are
easily solved with an off-the-shelf conic optimizer, we have found
it slightly more efficient to instead solve with a general nonlinear
optimizer, for which we use SNOPT [Gill et al. 1997].

5.4 Solving for the Local Rotations

The second phase in our alternating minimization solves for R
while holding T and B fixed. Minimizing equation 10 for R di-
rectly, however, leads to significant artifacts. In contrast to a stan-
dard ARAP energy, equation 8 employs a local rotation matrix Rgs

for each pair of edge group and base shape, rather than simply a
rotation matrix for each edge group. This allows the different base
shapes to be automatically locally rotationally aligned, but has the
disadvantage that directly including the Rgs rotations in an energy
minimization gives rise to highly non-rigid transformations since
the rotation matrices for the different shapes can sum to counteract
each other.

We remedy this issue by solving for the local rotations indepen-
dently for each input shape by aligning ps directly to q without any
interpolation between different shapes. This is achieved by defining
Rgs as the g,sth element of the array R minimizing equation 10 for
just the single base shape ps.

Rgs =

[
argmin
R∈SO(k)

E(q, B,R,ps)

]
gs

(21)

Similar to equation 8, the notation [X]gs is used to refer to a single
element in the matrix X. As when solving for T and B in section
5.3, this can be solved without explicitly representing q by instead
representing the minimization in terms of T and B:

Rgs =

[
argmax
R∈SO(k)

Ed2(T, B,R,ps)

]
gs

=argmax
R∈SO(k)

tr
(
RK̂gs

)
(22)

where K̂ is the |G| × |S| array of k × k matrices representing
contraction of K̃ by T and B:

K̂gs1 =
∑
hs2

Bgs1K̃ghs1s2T
T
hs2 (23)

Note that the term Ed3 does not appear in equation 22 because
when computed for a single shape ps, the instances of R in equa-
tion 18 cancel, rendering Ed3 independent of R. The matrix
Rgs maximizing equation 22 over SO(k) can be found indepen-
dently for each g, s by solving a Procustes alignment problem as
Rgs = VUT where Rgs = UDVT is the singular value decom-
position of K̂gs1 [Sorkine and Alexa 2007].

5.5 Complete Optimization

The complete AMRAP optimization algorithm alternates between
solving for T and B as in section 5.3 and solving for R as in section
5.4. Technically, this alternating minimization is not guaranteed to
converge, given that we solve for R by minimizing a different en-
ergy than given by equation 20. Surprisingly we have not observed
this to be a serious problem in practice, and the rare cases where
we have observed it at all have been limited to a relatively minor
jittering. Nevertheless, if a guarantee of convergence is desired (at
the cost of some additional complexity) we describe a modified op-
timization algorithm suited to this task in appendix A.

We would also like to draw attention to one simplification of the
optimization algorithm which may be useful in situations where ro-
tations are not required. If rotations are not included in the opti-
mization, then it is sufficient to solve equation 20 once for T and
B. In addition, each suboptimization involved in computing D re-
duces to solving a single linear system. This allows us to efficiently
compute a globally optimal deformed mesh q by solving a series
of |S| linear systems followed by a single SOCP. Since our method
does not rely on nonlinearities in the objective function to reliably
interpolate between shapes, when applicable this technique can give
good results along with a guarantee of global optimality. We have
found facial expression manipulation to be a domain where this ap-
plies well.

6 Results

Figure 3: AMRAP as applied to a range of different situations.
All of these examples also make use of spatially localized blend
weights.

Figure 5: Artifacts appearing in the MeshIK system of Sumner et
al. [2005]. From left to right: discontinuous changes in shape,
counterintuitive deformations resulting from local minima, and re-
gression to the mean shape.

We illustrate example-based mesh deformation using an AMRAP
energy in the context of an interactive system for mesh-based in-
verse kinematics. After loading a set of example shapes and speci-
fying the positions of a set of handles on those shapes by selecting
vertices on one of the meshes, the user can interactively click and
drag the handles around while the resulting mesh deforms accord-
ingly. Our system can operate on either two- or three-dimensional
meshes, and makes no requirement that the 3D inputs be tetrahe-
dralizable. With respect to implementation complexity, our im-
plementation of the AMRAP solver requires approximately 900
lines of C++ (including the trust region algorithm in appendix A).
For comparison, our equivalently verbose implementation of the
method of Jacobson et al. [2012a] requires approximately 300 lines
of code. We have found AMRAP deformations to work well for
a wide range of different cases, including click-and-drag animation
of stylized creatures, posing articulated characters, and face expres-
sion manipulation (figures 9 and 3).

Our approach reliably interpolates between its set of input shapes
in an intuitive manner while avoiding the artifacts present in both
existing shape space and energy interpolation formulations. Figure
2 illustrates a comparison between our approach and a selection of
existing methods as applied to the input meshes in figure 1. As the
shape is stretched and contracted by the user dragging the right-
most handle, our approach smoothly interpolates between the three
in put shapes, both without (row a) and with (row b) optimizing for
local rotations. In contrast an energy interpolation approach such as
that of Chao et al. [2010] exhibits discontinuous transitions (row c)
while a nonlinear shape space method such as that of Schumacher
et al. [2012] shows noticeable artifacts resulting from local minima
in how the blending weights are computed. Similar artifacts can be
observed using the MeshIK system of Sumner et al. [2005] (figure
5). Further examples how our approach avoids these sort of arti-
facts are shown in figure 6 and 4. We have found this property of
reliability to be very useful in authoring deformable models, as it
ensures that all of the artist-provided input shapes are actually used
in an intuitive way in the final result.

We have also observed a benefit to the expressiveness of our defor-
mations from the use of spatially varying blends of the input shapes.
This is particularly the case with deformations of articulated char-
acters, where it allows different limbs to draw from different ex-
emplars. As shown in figure 7 omitting this capability from our
approach can lead to noticeable artifacts in how the limbs of the
character deform, and removes the ability of the user to freely ma-
nipulate the individual limbs without issue.

To motivate our choice of λ = 0.5 in equation 20, figure 8 illus-
trates how our method interpolates the set of three input meshes
shown in figure 1 with respect to the position of the rightmost han-
dle. As can be observed, setting λ in equation 20 to a large value
approximates a piecewise constant deformation by projection into

Figure 4: The top row shows a snake animated with AMRAP, while the bottom row shows the same inputs applied to the method of Schumacher
et al. [2012].

Figure 6: For each of the lion and chameleon cases, the three rows
show a different method applied to the same inputs. From top to
bottom: AMRAP, shape-space-only AMRAP (λ = 0), and [Schu-
macher et al. 2012]. Note how without the energy in equation 5
the lion does not properly curl up, nor does the chameleon open its
mouth as intended.

the nearest Voronoi cell. Setting a λ to a small value results in
near piecewise linear interpolations, but tends to be overzealous in
lessening the contribution of nearby input shapes when none of the
input meshes can accurately match the user’s constraints. Although
it is not obvious in the figure, small values of λ also lead to a more
poorly conditioned optimization and take longer to converge to a
given accuracy. The default value of λ = 0.5 provides a good com-
promise.

Table 1 lists the runtime performance of our approach on a number
of examples as measured on an unoptimized single-threaded C++
implementation running on a 2.4 GHz IntelrXeonrE5-2630. The
bulk of the runtime computation is spent within the nonlinear op-
timizer solving equation 20. The times shown in the table are for
a single iteration of the alternating optimization. Since we initial-
ize each frame with the result from the previous frame, this still
produces high-quality results. Nevertheless in the videos accompa-
nying this paper we run the optimizer for more iterations so long as
this keeps the performance at real-time framerates. Since the head
and face models do not benefit from rotations, we use the formula-

Figure 7: The left column shows AMRAP deformations with spa-
tially varying blending, while the right column shows AMRAP with-
out spatially varying blending and its associated artifacts in the
way the legs of the lion and horse bend.

name k |P| |S| |H| precompute runtime
snake 2 817 5 2 0.05 0.01
caterpillar 2 481 3 2 0.03 0.005
starfish 2 3532 3 6 0.65 0.015
plant 2 3152 3 4 0.8 0.01
horse 3 8431 3 10 30 0.05
lion 3 5000 6 7 5.0 0.15
cat 3 7307 6 7 8.0 0.15
head 3 15941 7 6 79 0.17
face 3 23725 6 9 74 0.22

Table 1: The average computation time in seconds of our approach
on various models.

tion without local rotations for them, which does not significantly
change the performance. Depending on the model, between 50%
and 90% of the precomputation time is spent calculating the skin-
ning weights for each handle.

In testing AMRAP deformations on a variety of different models,
we have generally found that very little tweaking or trial and error
was needed, and for the most part we could go straight from the in-
put shapes, define a set of handles, and the deformations would be
as desired. In the case that some tuning was required, it was in the
form of adding a few extra handles with positions that were allowed
to vary freely as a means of injecting extra degrees of freedom into
the deformation (a process analogous to the additional weight func-
tions used by Jacobson et al. [2012a]). Of the examples appearing
in this paper and its accompanying video, the lion and the horse
are the only ones where this was necessary, where the additional
handles appear as gray dots.

Figure 9: Three, examples of results generated by our method, each shown on a different row. The input meshes are surrounded by a black
box, while the other meshes are automatically generated by clicking and dragging a single handle on the shape to various locations.

Figure 8: The average value of B for a deformed mesh generated
from the three input shapes in figure 1 as a function of the position
of the rightmost handle. From top left to bottom right the first three
are for the formulation without rotations using λ = 0.5, λ = 10
and λ = 0.01 respectively. The bottom right shows the full AMRAP
optimization with λ = 0.5.

7 Conclusions and Future Work

The ability to draw from multiple example shapes provides an easy
way to create stylized and expressive deformations with simple user
interactions. We have described an approach for animating and ma-
nipulating these deformations in real time which works with no pa-
rameter tuning across a wide range of different situations, including
highly nonphysical stylized deformations.

There are a number of areas for improvements and extensions of
this work. Probably foremost is the ability to handle large numbers

of handles and input shapes. Although our formulation allows the
deformation to be calculated with a speed independent of the input
mesh, it bogs down when many handles or input shapes are speci-
fied. This makes it difficult to, for instance, apply a large library or
motion stream of captured shapes. Since the run time is dominated
by solving the conic optimization in equation 20, developing a fast
specialized solver is a promising direction. In addition, although
our method allows some basic control over how the different shapes
are blended via the parameter λ, more rich control would be useful,
for instance the ability to provide a higher order smoothness beyond
C0 continuity. Continuing further with this idea, it would also be
valuable to have control over the temporal aspects of the deforma-
tion. As it stands our technique only uses the spatial positions of the
handles, but when generating animations it is likely that some no-
tion of time would be useful as well. This could come in the form of
integrating dynamics into the deformation, or in a kinematic fash-
ion where we interpolate between example animations instead of
just example shapes.

Acknowledgments

The mesh data for the horse, lion, cat and head models was made
available by Robert Sumner and Jovan Popović from the Com-
puter Graphics Group at MIT [Sumner and Popović 2004]. The
mesh data for the face model was made available by the Univer-
sity of Washington Graphics and Imaging Laboratory [Zhang et al.
2004]. Additional thanks to Christian Schumacher for assistance
with [Schumacher et al. 2012], and to Alexandru Eugen Ichim and
Lillian Kittredge for help with proofreading.

References

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-
as-possible shape interpolation. In Proceedings of the 27th An-
nual Conference on Computer Graphics and Interactive Tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, SIGGRAPH ’00, 157–164.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and ani-
mation of 3d characters. ACM Trans. Graph. 26, 3 (July).

BERGERON, P., AND LACHAPELLE, P. 1985. Controlling facial
expressions and body movements in the computer generated an-

imated short ’Tony de Peltrie’. In SigGraph ’85 Tutorial Notes,
Advanced Computer Animation Course.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE Transactions on Visualization
and Computer Graphics 14, 1 (Jan.), 213–230.

BOYD, S., AND VANDENBERGHE, L. 2004. Convex Optimization.
Cambridge University Press, New York, NY, USA.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010.
A simple geometric model for elastic deformations. ACM Trans.
Graph. 29, 4 (July), 38:1–38:6.

DER, K. G., SUMNER, R. W., AND POPOVIĆ, J. 2006. In-
verse kinematics for reduced deformable models. In ACM SIG-
GRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH
’06, 1174–1179.

FENG, W.-W., KIM, B.-U., AND YU, Y. 2008. Real-time data
driven deformation using kernel canonical correlation analysis.
ACM Transactions on Graphics (TOG) 27, 3, 91.

FRÖHLICH, S., AND BOTSCH, M. 2011. Example-driven defor-
mations based on discrete shells. Computer Graphics Forum 30,
8, 2246–2257.

GAO, L., LAI, Y.-K., HUANG, Q.-X., AND HU, S.-M. 2013. A
data-driven approach to realistic shape morphing. In Computer
graphics forum, vol. 32, Wiley Online Library, 449–457.

GILL, P. E., MURRAY, W., AND SAUNDERS, M. A. 1997. Snopt:
An sqp algorithm for large-scale constrained optimization. SIAM
JOURNAL ON OPTIMIZATION 12, 979–1006.

GROCHOW, K., MARTIN, S. L., HERTZMANN, A., AND
POPOVIĆ, Z. 2004. Style-based inverse kinematics. ACM Trans.
Graph. 23, 3 (Aug.), 522–531.

HAHN, F., THOMASZEWSKI, B., COROS, S., SUMNER, R. W.,
COLE, F., MEYER, M., DEROSE, T., AND GROSS, M. 2014.
Subspace clothing simulation using adaptive bases. ACM Trans.
Graph. 33, 4 (July), 105:1–105:9.

HUANG, H., ZHAO, L., YIN, K., QI, Y., YU, Y., AND TONG,
X. 2011. Controllable hand deformation from sparse ex-
amples with rich details. In Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
ACM, New York, NY, USA, SCA ’11, 73–82.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3
(July), 1134–1141.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O.
2011. Bounded biharmonic weights for real-time deforma-
tion. ACM Transactions on Graphics (proceedings of ACM SIG-
GRAPH) 30, 4, 78:1–78:8.

JACOBSON, A., BARAN, I., KAVAN, L., POPOVIĆ, J., AND
SORKINE, O. 2012. Fast automatic skinning transforma-
tions. ACM Transactions on Graphics (proceedings of ACM SIG-
GRAPH) 31, 4, 77:1–77:10.

JACOBSON, A., WEINKAUF, T., AND SORKINE, O. 2012.
Smooth shape-aware functions with controlled extrema. Com-
puter Graphics Forum (proceedings of EUROGRAPHICS/ACM
SIGGRAPH Symposium on Geometry Processing) 31, 5, 1577–
1586.

JONES, B., POPOVIC, J., MCCANN, J., LI, W., AND BARGTEIL,
A. 2013. Dynamic sprites. In Proceedings of Motion on Games,
ACM, New York, NY, USA, MIG ’13, 17:39–17:46.

JONES, B., THUEREY, N., SHINAR, T., AND BARGTEIL, A. W.
2016. Example-based plastic deformation of rigid bodies. ACM
Trans. on Graphics 35, 4 (July).

KILIAN, M., MITRA, N. J., AND POTTMANN, H. 2007. Geomet-
ric modeling in shape space. ACM Trans. Graph. 26, 3 (July).

KOYAMA, Y., TAKAYAMA, K., UMETANI, N., AND IGARASHI,
T. 2012. Real-time example-based elastic deformation. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, SCA ’12, 19–24.

LEVI, Z., AND GOTSMAN, C. 2015. Smooth rotation enhanced
as-rigid-as-possible mesh animation. 264–277.

LEWIS, J. P., AND ANJYO, K.-I. 2010. Direct manipulation blend-
shapes. IEEE Comput. Graph. Appl. 30, 4 (July), 42–50.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: a unified approach to shape interpolation
and skeleton-driven deformation. In Proceedings of the 27th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 165–172.

LIU, L., ZHANG, L., XU, Y., GOTSMAN, C., AND GORTLER,
S. J. 2008. A local/global approach to mesh parameterization.
In Proceedings of the Symposium on Geometry Processing, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
SGP ’08, 1495–1504.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS,
M. 2011. Example-based elastic materials. ACM Trans. Graph.
30, 4 (July), 72:1–72:8.

MILLIEZ, A., WAND, M., CANI, M.-P., AND SEIDEL, H.-P.
2013. Mutable elastic models for sculpting structured shapes.
In Computer Graphics Forum, vol. 32, Wiley Online Library,
21–30.

NIETO, J., AND SUSN, A. 2013. Cage based deformations: A sur-
vey. In Deformation Models, M. Gonzlez Hidalgo, A. Mir Tor-
res, and J. Varona Gmez, Eds., vol. 7 of Lecture Notes in Compu-
tational Vision and Biomechanics. Springer Netherlands, 75–99.

SCHUMACHER, C., THOMASZEWSKI, B., COROS, S., MARTIN,
S., SUMNER, R., AND GROSS, M. 2012. Efficient simulation
of example-based materials. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
SCA ’12, 1–8.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. SIGGRAPH Comput. Graph.
20, 4 (Aug.), 151–160.

SEO, J., IRVING, G., LEWIS, J. P., AND NOH, J. 2011. Com-
pression and direct manipulation of complex blendshape models.
ACM Trans. Graph. 30, 6 (Dec.), 164:1–164:10.

SHEFFER, A., AND KRAEVOY, V. 2004. Pyramid coordinates
for morphing and deformation. In Proceedings of the 3D Data
Processing, Visualization, and Transmission, 2Nd International
Symposium, IEEE Computer Society, Washington, DC, USA,
3DPVT ’04, 68–75.

SLOAN, P.-P. J., ROSE III, C. F., AND COHEN, M. F. 2001.
Shape by example. In Proceedings of the 2001 symposium on
Interactive 3D graphics, ACM, 135–143.

SONG, C., ZHANG, H., WANG, X., HAN, J., AND WANG, H.
2014. Fast corotational simulation for example-driven deforma-
tion. Computers & Graphics 40, 49–57.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible sur-
face modeling. In Proceedings of the Fifth Eurographics Sympo-
sium on Geometry Processing, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, SGP ’07, 109–116.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer
for triangle meshes. ACM Trans. Graph. 23, 3 (Aug.), 399–405.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ,
J. 2005. Mesh-based inverse kinematics. In ACM SIGGRAPH
2005 Papers, ACM, New York, NY, USA, SIGGRAPH ’05,
488–495.

TWIGG, C. D., AND KAČIĆ-ALESIĆ, Z. 2010. Point cloud glue:
Constraining simulations using the procrustes transform. In Pro-
ceedings of the 2010 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, SCA ’10, 45–54.

WANG, Y., JACOBSON, A., BARBIC, J., AND KAVAN, L. 2015.
Linear subspace design for real-time shape deformation. ACM
Trans. Graph. 34, 4.

WAREHAM, R., AND LASENBY, J. 2008. Bone glow: An im-
proved method for the assignment of weights for mesh deforma-
tion. In AMDO, Springer, F. J. P. Lpez and R. B. Fisher, Eds.,
vol. 5098 of Lecture Notes in Computer Science, 63–71.

WEBER, O., SORKINE, O., LIPMAN, Y., AND GOTSMAN, C.
2007. Context-aware skeletal shape deformation. In Computer
Graphics Forum, vol. 26, Wiley Online Library, 265–274.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M.
2004. Spacetime faces: High resolution capture for modeling
and animation. ACM Trans. Graph. 23, 3 (Aug.), 548–558.

ZHANG, W., ZHENG, J., AND THALMANN, N. M. 2015. Real-
Time Subspace Integration for Example-Based Elastic Material.
Computer Graphics Forum.

A Trust Region Optimization

Although it normally works well in practice, the alternating mini-
mization is section 5 is not guaranteed to converge because the step
solving for T and B and the step solving for R do so by minimiz-
ing different energies. To guarantee convergence the nonlinearities
introduced by the solution for R can be incorporated into the solu-
tion for T and B. As this adds a non-trivial additional complexity
to the optimizer to cover relatively rare failure cases, we recom-
mend that anyone implementing an AMRAP solver do so first as
described in section 5, and only implement the additions here if it
appears necessary to do so.

As T and B are updated, the value of R changes according to
equation 22. To account for this, we linearize the effect of R
on E(T, B,R,P) and minimize equation 20 with a trust region
approach. This linearization approximates E in the vicinity of
R ≈ R0 as:

E(T, B,R,P) ≈E(T, B,R0,P) + ∂RE (24)

Where ∂RE is the linearization of the effect the R has on E as T

and B vary and can be simplified as:

∂RE =
1

2
√

Ed(T, B,R,P)
∂REd (25)

=
1

4
√

Ed(T, B,R,P)
∂REd3 (26)

Where the last equality results from observing that Ed1 is indepen-
dent of R and that the definition of R via equation 22 means that
∂REd2 = 0. Letting x represent a single parameter of T and using
equation 18 gives:

∂REd3 =
∑
gs1s2

Bgs1Bgs2 tr (Hgs1s2dRgs1s2) (27)

with

dRgs1s2 =RT
gs2 (∂xRgs1) + (∂xRgs2)

T Rgs1 (28)

where ∂xRgs is calculated as described as described by Twigg and
Kačić-Alesić [2010]:

∂xRgs = UΩVT (29)

where U and V come from the singular value decomposition of
K̂gs and Ω is a k × k matrix such that:

Ωij =

[
UT

(
∂xK̂gs

)
V
]
ij
−

[
UT

(
∂xK̂gs

)
V
]
ji

Dii +Djj
(30)

The term ∂xK̂gs in this equation represents the partial derivative
of K̂gs with respect to x and is straightforward to compute by dif-
ferentiating equation 23.

To complete the algorithm solving for T and B, we start with
an initial guess T0, B0 and minimize equation 24 subject to
the constraints in equation 20 and the additional constraint that
∥vec(T, B)− vec(T0, B0)∥ ≤ r. The scalar r is a trust radius
ensuring that the optimization converges, and a sufficiently small
value of r guarantees a decrease in the optimization’s objective
function. This optimization is another SOCP which may solved
with the same technique as equation 20.

The trust radius r starts at r = 1 and varies dynamically during
the course of the optimization. If solving for T and B then recom-
puting R yields a decrease in E, then we update r′ = max(ρr, 1)
and proceed. Otherwise we set r′ = max(ρ−1r, 1) and re-solve.
We use the relatively aggressive value ρ = 10 as a reflection of
the empirical observation that the trust region is rarely necessary,
but when it is r normally needs to be relatively small to ensure a
decrease in E.

